If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x+3=2x^2
We move all terms to the left:
6x+3-(2x^2)=0
determiningTheFunctionDomain -2x^2+6x+3=0
a = -2; b = 6; c = +3;
Δ = b2-4ac
Δ = 62-4·(-2)·3
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{15}}{2*-2}=\frac{-6-2\sqrt{15}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{15}}{2*-2}=\frac{-6+2\sqrt{15}}{-4} $
| -43+22=-5x+15 | | t-3/2=7 | | x2+x−72=0 | | 10(5x+1)+6=9+8(x-6) | | 19=2t+18 | | 2/5(6x+4)=x+10 | | s-7/2=4 | | -5.6=-0.9u+0.1u | | 5(r-6)=15 | | 17.15t-4.9t^2=2.45 | | (8x+40)=168 | | 17.15t-4.9t^2=2.15 | | y-6/2=4 | | 2/5=5/7+j | | 17.15t-4.9t^2=0 | | 4a-5=-25 | | t+.0.95=1.25 | | x+2=(3-4) | | -13=n(-36) | | 8/3t=5/8-3/8 | | 7=2(5+x) | | 4t+8=12 | | 4z=1.3+4.3 | | 27=v+5 | | 12/5=5/7+j | | −3(n−5)−(4n−1)=−4+(3n−1) | | 7x-6=-12 | | 0.5(2y+9)=3.0(4y-6) | | 5/7+j=2/5*1 | | 5/7+j=2/5 | | 3/5y-3=12 | | x+x+8=x+14 |